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Taking the example of the longitudinal oscillation of a rod, the parameters of an end damper are found which removes any 
perturbations in the sy~,%-m in the least time, equal to twice the time required for a wave to pass along the rod and is optimal in 
this sense. © 1997 Elsevier Science Ltd. All rights reserved. 

The problem of determining an optimal dynamic oscillation d~rnper was apparently formulated for the first time 
by Timoshenko [1] as applied to a system in the form of a point mass fastened to a base by means of a spring. An 
elastic-inertial device with a viscous damper is connected to the mass which is excited by means of a periodic force. 

A rigorous and complete solution of the optimization problem was obtained in [2] for this simplest of systems, 
and the damping pa~tmetefs were determined for which the rate of damping (the decrement) of the free oscillations 
of the system is the maximum possible. The results were extended to the ease of the damping of the oscillations 
of a system with two degrees of freedom. Investigations were carried out in [2] from the position of the theory of 
the oscillations of  linear lumped-parameter systems for the analogous problem in the ease of a chain of coupled 
oscillators which simulate the longitudinal oscillations of a rod and, naturally, a solution was sought in a restricted 
class of possible situations which exclude absolute damping in a finite time. 

The problem of finding the damping parameters which ensure damping in a finite time can be formulated and 
solved within the framework of distributed systems by analysing dynamic processes using wave theory. The possibility 
of creating a damper which produces the fastest damping in distributed systems, was indicated for the first time 
in [31. 

We consider a rod which is rigidly clamped at one end (x ffi 0) and is secured at the other end (x = / )  by means 
of a viscous damper (Fig. 1). 

The propagation of longitudinal perturbations in the rod is described by the initial-boundary-value 
problem 

u.-c2u.~ffiO (1) 

u I~--o = O; EFux + otut Ixft = 0 (2) 

u(x,O)ffiUo(x), ut(x,O)=eo(X) (O~x<~t) (3) 

Here, u~2 ,t) is the longitudinal displacement of the cross-section of the rod relative to the unperturbed state, 
c ffi (E / p),l, is the w~-loeity of the longitudinal waves, E and p are the modulus of elasticity and the density of the 
rod material, F is the: cross-sectional area of the rod, et is the coet]ieient of viscous drag, and Uo(x) and Vo(x) are 
speedied functions. 

The solution of wave equation (1) can be represented in the form of two waves travelling in opposite directions 

u(x, t )= f ( t  + x l  c ) + h ( t - x l  c) (4) 

The expansion of the required solution in travelling waves enables one to  change from a partial differential 
boundary-value problem to an ordinary differential equation with a divergent parameter which describes the change 
in the form of the w~Lve~t) ffi --h(t) when it interacts with the boundaryx ffi ! 

EFc -I [ f ' ( t  + x) + f ' ( t -  x)] + et[f '(t  + ' 0 -  f ' ( t -  x)] = 0 (5) 

where x = l/c is the time the wave takes to travel along the rod. 
In order to solve the problem, initial conditions are required for f ( t  +- x/c). These are found by expanding the 

initial perturbations (3) in travelling waves when t ffi 0 

f ' ( ± x l c )  = ~[±Vo(X)+cU~(x)], 0 ~ x ~ l 
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Fig. 1. 

The boundaryx = 0 is absolutely rigid (u(0, 0 = 0) and therefore, by continuing the functions Vo(x) and Uo(x) 
in the interval [4, 0] in an even and odd manner respectively, we obtain the initial conditions for f" in the form 

i f ( t )  = I/2[Vo(Ct)+cU~(ct) ], f ' ( - t )  = - i f ( t )  (0 <<- t ~ ' 0  

On puttingf'(t) -- ~ t ) ,  we find that the initial problem reduces to one of finding the solution of the difference 
equation 

q~(t+x)-VcO(t-x)=O, 7=(¢x-EF/c) / (c~+EF/c)  (6) 

which satisfies the condition 

,p(t) = ~[ V o (ct) +cU 6 (cOl, {p(-t) =-,p(t), (0 <~ t ~ x) 

We will seek a solution of Eq. (6) in the form [4] 

(7) 

where l-l(t) is a certain periodic function with period 2x and I~ is a constant which depends on the parameters of 
the system. 

On substituting (8) into (6), we find that the quantity 13 ffi in ?-1/(2x), that is, the solution (8) is an infinite set of 
2x-periodic functions which differ in their factors exp (/kx/x) (k = 0, _ 1, __.2 . . . .  ). Henceforth, we shall therefore 
understand 9(0 to be the "principal value" for which k = 0 and in denotes the principal value of the logarithm. 

Hence, the solution (8) can be written in the form 

cO(t)=lI(t)exp(tlnT/(2"o) when ¥ > 0  (ot> EFIc) (9) 

tp(t) = H(t)exp[(ln(-¥)+in)tl  (2x)] when ¥ < 0 ( a  < EFIc) 

The function II(t) in the interval [-x, x] which occurs in (8) is defined by the initial conditions 

FI(t) = q~(t)exp(13t) 

and q~(t) is found from relation (7). 
We continue II(t) periodically outside this interval 

a ** + rda nkt rl(t)=-~+ ~ ( a  t cos +a~sin--~ 
2 k=l  \ "C ~ ] 

a ~ =  1 i i'l(O)cos ffkOdO, a~-= / i l-l(O)sinlr'kOdo 

Hence, if the functions of the initial perturbations U0 and V 0 are known, the required solution u(x, t) is determined 
in terms of the function ~ t )  by integration 

t+xlc  

u(x, t) = J ~(O)dO 
t - x l c  

qRt) = n(t) exp (-It) (8) 
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After some redu(,~ion, we obtain the solution of problem (1)-(3) when 3' > 0 (c~ > EF/c) 

u(x, t) = f ( t  + x l  c ) -  f ( t -  x l  c) 

f(x)=l-D3"expC-'~xxln3"l[ao+~__lCP~C°s~+P'izsin-Xk~-)} 
p~: = 2,(a~ l n3 ' : l : 21 f f ca~) ln3 '  

in 2 y +(2nk) 2 

(lO) 

When 3' < 0 (c~ < EF/c), after separating the real and imaginary parts, the solution has the form (10), where 

~ Cq'~ cosli+ 21r'kx+q'~sinll+ 21lkx I 
L z~ Jr=--  k, 2~ 2~ 

ao't In (-3') ao't'n (11) 
q~ = x2 +ln2(-V) ' qo = x2 +1n2(-3') 

q~ a~ In(-3') :1: a~ (~t + 2nk ) .  
= in2 (_3')+(~ + 2r,.k)2 

In particular, the displacement of the rod at its boundaryx = l is equal to 

2 a ° + ~ ,  ( - l ) t  p~ 'cos - -~+p~s in  , 3 '>0  

. (L 0 = 2exp dn( -Y)  ch ln(-3') q - k c o s ~ + 2 n k t - q  sinn , 3 '<0 
2"t 2 t 2~ 

Expressions (10)--(12) give, in general form, the solution of the problem of the damping of the longitudinal 
oscillations of a rod which is rigidly clamped at one end. 

Solution (12) shows that, at the initial stage of the motion when the time does not exceed twice the time taken 
for the wave to travel along the rod (t < 2~), initial conditions exist under which an increase in the amplitude of 
the longitudinal displacements is possible in this interval. When t > 2% the longitudinal displacements of the rod 
in each cross-section decay exponentially: u(x, t) - exp (t in Ivl/(2x)). 

The rate of decay of the oscillations is characterized by the quantity D = -In IT[ which has the meaning of the 
logarithmic decrement of the oscillations. 

By analogy with electrodynamics and acoustics, we shall callEF/c = Z0 the impedance of the rod for longitudinal 
waves and c~ ffi Z the damping impedance. The dependence of the logarithmic decrement D ffi In [(1 + Zo/Z)/ 
(1 - Zo/Z) on a qua~atity which is equal to the ratio of the impedance of the rod to the damping impedance Zo/Z 
is shown In Fig. 1. 

It is seen that, when Z = Z 0 and the impedance of the rod and the damping impedance are equal, the logarithmic 
decrement tends to infinity, that is, absolute damping of the oscillations for any initial perturbations starting from 
a time t = 2x occurt; practically instantaneously. Such a damping provides the fastest damping of the oscillations 
in the system and it is optimal in this sense. 

This research wa~; carried out with support from the Russian Foundation for Basic Research (96-01-00680). 
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